Global activities in bioinformatics training and education

Nicola Mulder

PI: H3ABioNet

University of Cape Town

Outline

- ▶ Challenges in bioinformatics education & training
- ► Addressing challenges -Education summits
- H3ABioNet & NGS Academy -running a diverse bioinformatics training program
- ▶ Other applications of trainer resources

General challenges in training

- Qualified trainers who are knowledgeable in the topic and are good trainers
- Developing and updating training materials –lectures, tools and practice datasets
- > Teaching a **mixed audience**
- > Keeping the audience engaged
- > Assessing competency and skills gain
- Going virtual

Challenges in bioinformatics training

- There is a huge demand for more people with bioinformatics skills
- > Bioinformatics topics are vast, in flux and change rapidly
- Audiences are broad and need different levels of competency
- Competencies often require additional foundational skills (statistics, programming)
- > Training requires theory and hands-on practice
- > Few trainees have a standard bioinformatics education

Global efforts to address challenges

Challenges:

- Audiences are broad and need different levels of competency
- Assessing competency and skills gain
- High demand, not enough trainers
- Qualified trainers who are knowledgeable in the topic and are good trainers
- Teaching to a mixed audience, keeping the audience engaged
- Developing and updating training materials
- ► Bioinformatics topics are vast and in flux

Solutions:

Develop and use competencies

Use different training modalities

Train the Trainer

Develop Trainer portal

Education summits

AIM: Bring together Bioinformatics trainers and educators to drive the development of standards and guidelines for Bioinformatics training and education globally

- > Summit I: 14-17th May 2019, Cape Town hosted by H3ABioNet
- Summit II: May 2020 virtual hosted by EBI
- Summit III: May 2021 virtual hosted by CABANA
- Summit IV: May 2022 virtual hosted by APBioNet

Format:

- Minimal presentations
- Breakout working sessions
- Discussions

Break out groups

Education summit projects

Competencies

Course endorsement

Trainer resources

Train-the-trainer

Going virtual

Training in LMICs

Competencies: what are they?

- https://www.td.org/insights/what-is-a-competency
- > something you need to be able to do a specific job
- ▶ to demonstrate competence, workers must be able to perform certain tasks or skills with a required level of proficiency
- A competency is broken down into specific skills or tasks
- ➤ To achieve competence in a particular job, a person should be able to perform various tasks or skills at a target proficiency level

Knowledge

Skills

Attitudes

Define audience/persona

Bioinformatics User

Physician

Lab technician

Ethicist

Biocurator

Bioinformatics Scientist

Academic life science researcher

Molecular life science educator

Academic bioinformatics researcher

Core facility scientist

Bioinformatics Engineer

Bioinformatician in academic or research infrastructure support role

Bioinformatics software developer/ software engineer

Define audience/persona

Determine competencies required

Relationship	#	Competency
Bioscience	A 3	Work at depth in at least one technical area aligned with the life sciences
	В3	Prepare life science data for computational analysis
	C 3	Have a positive impact on scientific discovery through bioinformatics
Data Science	D3	Use data science methods suitable for the size and complexity of the data
	E 3	Manage own and others' data according to community standards and principles
	F3	Make appropriate use of bioinformatics tools and resources
Computer Science	G3	Contribute effectively to the design and development of user-centric bioinformatics tools and resources
	Н3	Make appropriate and efficient use of scripting and programming languages
	13	Construct, manage and maintain bioinformatics computing infrastructure of varying complexity
Professional Conduct	J3	Comply with professional, ethical, legal and social standards and codes of conduct relevant to computational biology
	K3	Communicate meaningfully with a range of audiences - within and beyond your profession
	L3	Work effectively in teams to accomplish a common goal
	М3	Engage in continuing professional development in bioinformatics

Define audience/persona

Determine competencies required

E3 - Manage own and others' data according to community standards and principles (UKNOS: COGBIO1; COGBIO2)

What do you need to know to exhibit competency in this area?

KE3-1 (UA K15). Database design and management, including information security considerations, big-data technologies, and database languages and systems.

KE3-2 (UA K6). Current approaches for modelling and warehousing of life science data.

KE3-3 (UA K20). The role of governance, curation and information architecture in data management.

KE3-4 (EA3.4c). Common document identification, tracking and control procedures.

KE3-5. Broader implications of using/storing sensitive data.KE3-6 (UA K8). Knowledge representation including file formats, ontologies and other controlled vocabularies.

KE3-7 (UA K10). Data storage and format requirements of downstream techniques to integrate, interpret, analyse and visualise biological data sets.

How does a person with this competence behave?

AE3-1 (UA A51). Acts with awareness of the wider context in which scientific research operates, recognising the implications for professional practice.

What skills do you need to exhibit competency in this area?

SE3-1 (UA S27). Designs and implements appropriate data storage formats and associated database structure.

SE3-2 (UA S28). Chooses appropriate computational infrastructure and database solutions - including internal or external/cloud resources. SE3-3 (UA S29). Stores and analyses data in accordance with ethical, legal and commercial standards, including checking who has access. SE3-4 (UA S30). Curates biological data using suitable metadata, ontologies and/or controlled vocabularies.

SE3-5 (UA S31). Makes use of suitable programming languages and/or workflow tools to automate data handling and curation tasks.
SE3-6. Drafts and files an appropriate Data Management Plan.
SE3-7 (UA S33). Prepares data for submission to appropriate public data repositories as required, being aware of ethical and legal

considerations.

How does a person with this competence avoid behaving?

NE3-1. Uses proprietary systems for data management.

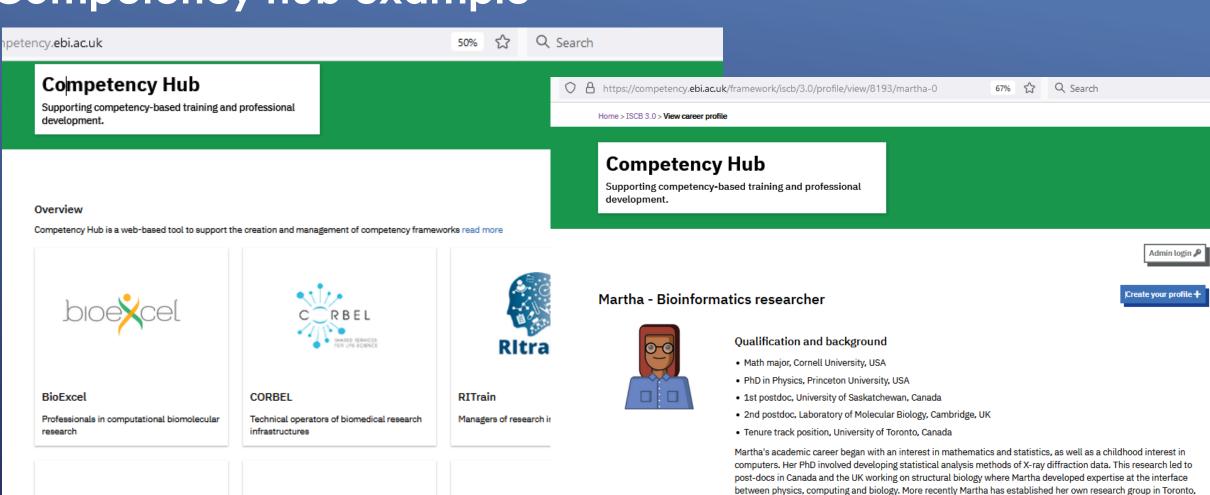
NE3-2. Publishes scientific results without making adequate data available for reproducibility.

NE3-3. Uses third-party data without appropriate legal or ethical approval and/or without citation or acknowledgement appropriate to the discipline.

	48	48 D3: Use data science methods suitable for the size and complexity of the data		
	49	49 D3: Use data science methods suitable for the KD3-1: Appropriate statistics in the con	ntext of bioinformatics and life science data analysis	Knowledgeledge
	50	50 D3: Use data science methods suitable for the KD3-2: Statistical and mathematical me	odelling methods, and key scientific and statistical ana	Knowledgeledge
	51	51 D3: Use data science methods suitable for the KD3-3: General data science approach	es to life science problems	Knowledgeledge
	52	52 D3: Use data science methods suitable for the KD3-4: Experimental design to ensure t	the statistical validity of high-throughput experiments	Knowledgeledge
ı	53	53 D3: Use data science methods suitable for the KD3-5: Comprehensions the importance	e of statistics in experimental design, data analysis an	Knowledgeledge
	54	54 D3: Use data science methods suitable for the SD3-1: Determines the best methods for	or data analysis, including the selection of statistical te	Skill
	55	55 D3: Use data science methods suitable for the SD3-2: Identifies and defines appropriat	te computing infrastructure requirements for the analysi	Skill
	56	56 D3: Use data science methods suitable for the SD3-3: Applies statistical methodologie	es appropriate to the analysis of data in the context of t	Skill
ı	57	57 D3: Use data science methods suitable for the SD4-4: Can process data into formats s	suitable for analysis, whilst maintaining integrity of the	Skill
ı	58	58 D3: Use data science methods suitable for the AD3-1: Approaches problems with a sy	stems-based, data-driven approach to scientific discov	Effective attitudes
	59	59 D3: Use data science methods suitable for the AD3-2: Recognises own limitations and	d consults experts when required	Effective attitudes
	60	60 D3: Use data science methods suitable for the AD3-3: Is conscious of the risks of over	rfitting and of appropriate methods for validation and co	Effective attitudes
ı	61	61 D3: Use data science methods suitable for the AD3-4: Critically reviews results before	interpretation and communication	Effective attitudes
		62 D3: Use data science methods suitable for the AD3-5: Reports on statistical methods		Effective attitudes
	63	63 D3: Use data science methods suitable for the ND3-1: Does not engage with statistica	al components of project	Ineffective attitudes

Define audience/persona

Determine competencies required


Define knowledge skills & attitudes

Determine level required for persona

		Scientist roles			Engineer roles			
	Competency	Discovery biologist (e.g. pharma or agri-food industry); Academic molecular life science researcher;	Molecular life science educator	Academic bioinformatics researcher	Core facility scientist	Bioinformaticia n supporting an academic lab or department		Software developer/ software engineer in a bioinformatics role
	General biology							
Α		evaluation	comprehension	synthesis	knowledge	application	application	application
В	Depth in at least one area of biology (e.g., evolutionary biology, genetics, molecular biology, biochemistry, anatomy, physiology)	create	analyze	create	evaluate	comprehension	comprehension	comprehension
С	Biological data generation technologies.	evaluation	understand	evaluation	evaluation	comprehension	comprehension	comprehension
D	Details of the scientific discovery process and of the role of bioinformatics in it.	application	evaluation	synthesize to create	application	application	application	application
E	Statistical (research) methods in the context of molecular biology, genomics, medical, and population genetics research.	application	evaluation	synthesize to create	application	application	application	synthesis to application

Competency hub example

Health Education England

NHS

CINECA

How do we use the competencies?

gaining a tenure track position and several high-profile grants from the pharmaceutical industry and the NIH.

Designing a new course

Define course objectives and learning outcomes

Identify competenci es needed

Decide on Blooms level required for each competency Add proposed content to address competency (knowledge)

Core competency

Desired target level (Bloom's)

(a) General biology

(b) Depth in at least one area of biology, biochemistry, anatomy, physiology).

(c) Biological data generation technologies.

(d) Details of the scientific discovery process and of the role of bioinformatics in it.

(e Statistical research methods in the context of molecular biology, genomics, medical, and population genetics research.

(f) Bioinformatics tools and their usage.

Look for overlaps in content between modules

Determine assessment methods that assess skills

Flesh out curriculum and depth of content (consider KSAs)

Mapping competencies to a course

Get curriculum content & competencies

Score competencie s for each module

Sum up scores and look for gaps

Fill gaps with additional content or modules

DEGREES

COURSES

Decide on Blooms level targeted for each competency

Map to specific KSAs?

Core competency	Intro to biology	Biostatistics	Programming
(a) General biology	2		
(b) Depth in at least one area of biology (e.g., evolutionary biology, genetics, molecular biology, biochemistry, anatomy, physiology).	2		
(c) Biological data generation technologies.	1		
(d) Details of the scientific discovery process and of the role of bioinformatics in it.	1		
(e Statistical research methods in the context of molecular biology, genomics, medical, and population genetics research.	0		
(f) Bioinformatics tools and their usage.	0		
			1

Core competency

Bloom

Knowledge

Skills

Attitude

(a) General biology

(b) Depth in at least one area of biology (e.g., evolutionary biology, genetics, molecular biology, biochemistry, anatomy, physiology).

(c) Biological data generation technologies.

(d) Details of the scientific discovery process and of the role of bioinformatics in it.

(e) Statistical research methods in the context of molecular biology, genomics, medical, and population genetics research.

(f) Bioinformatics tools and their usage.

Identify and fill gaps in content

Guidelines document

How we have applied these

► H3ABioNet

Pan African bioinformatics network for H3Africa – building bioinformatics capacity

- Mapping existing courses
- ▶ Used to design new courses
- ► NGS Academy
 - Development of a recommended curriculum for pathogen surveillance

NGS for pathogen surveillance Training program for the Africa CDC Pathogen Genomics Initiative

NGS academy curriculum development

Staff Job descriptions What they need to do their jobs Curriculum required Map to courses Competencies Knowledge Lab Tasks Module 1 Skills Existing courses Content manager Attitudes Knowledge Competencies Wetlab Tasks Module 2 Existing courses Skills Content scientist Attitudes Bioinform Knowledge Competencies Module 3 Tasks atics New courses Skills Content **Attitudes** scientist Knowledge Competencies Tasks Module 4 Existing courses Sys Admin Skills Content **Attitudes**

Example of the curriculum

B2	▼ : × ✓ f _x	What is genomic epidemiology, when	and how is it us	sed in public hea	ilth, tracking var	riants			~
4	A	В	С	D	E	F	G	Н	1 🔼
1	Viral Pathogen Surveillance Topics	Content		Course Level for Bioinformatician		Comments	SARS-CoV-2 NGS Training	Course Level	SARS-CoV-2 Bioinfor Training
2	Introduction to Genomic Epidemiology	What is genomic epidemiology, when and how is it used in public health, tracking variants	Introductory	Intermediate	ntermediate (adv?))	SARS-CoV-2 NGS Training Module 1	Beginner	
3	Study Design	Study design, which samples to sequence, targeted or metagenomics analysis	Introductory	Intermediate	Advanced		SARS-CoV-2 NGS Training Module 2	Beginner	
4	Introduction to NGS	Overview of different NGS technologies and workflows	Intermediate	Intermediate	Introductory		SARS-CoV-2 NGS Training Module 1	Beginner	SARS-CoV-2 Bioinfoi Training Module 1
5	Sample processing and library preparation (Theory and wet lab practical)	Sample collection, handling, storage, DNA/RNA extraction, library preparation, DNA amplification, quantification, normalization	Advanced	Introductory	Introductory		SARS-CoV-2 NGS Training Module 2	Beginner	
6	Lab practical: DNA sequencing	Introduction to instrument, running sequencing (technology specific)	Advanced						L
7	ARTIC amplicon sequencing	Introduction to ARTIC amplicon sequencing, data processing through workbench	Advanced	Advanced	Introductory				
8	NGS data processing	Sequence data QC, mapping, variant calling, assembly, consensus generation	Intermediate	Advanced	Introductory				SARS-CoV-2 Bioinfor Training Module 1
9	NGS, Illumina, ONT workflows	Sequencing and data processing workflows specific to technology platform	Advanced	Advanced	Introductory		SARS-CoV-2 NGS Training Module 3, 4	Intermediate	
10	Nextclade and Pangolin	Introduction to Nextclade and Pangolin, using tools through workbench and online	Intermediate	Advanced	Introductory				
11	Galaxy workflow (or other slected workflow(s))	Galaxy Concepts: Histories, data and	Intermediate	Advanced	Introductory				₹
	Generic courses Viru	s Curriculum Bacterial Curriculum	Bioinformation	cs Curriculum	+	: 1			Þ

Mapping to competencies developed from: job descriptions, existing competency frameworks

Lab

manager

Wetlab

scientist

Bioinformatics

scientist

Introduction to NGS, Study design

Health & Safety

Ethics & policy

Intro to Genetic Epi

Unix, scripting

Programming

Workflows, HPC

Viral pathogens

Sample preparation

Sequencing

Data QC processing

Analysis workflow

Phylogenetics, **Bioinformatics**

Data curation & submission

Bacterial pathogens

Sample preparation

Sequencing

Data QC processing

Analysis workflow

Phylogenetics, Bioinformatics

Data curation & submission

Presenting data for policy/action

SARS-Cov-2

Bioinformatics

Sys Admin

Tuberculosis

Introduction to NGS, Study design

Ethics & policy

Intro to Genetic Epi

Unix, scripting

Programming

Bioinformatics

Workflows, HPC

Viral pathogens

Sample preparation

Sequencing

Data QC processing

Analysis workflow

Phylogenetics, Bioinformatics

Data curation & submission

Bacterial pathogens

Sample preparation

Sequencing

Data QC processing

Analysis workflow

Phylogenetics, Bioinformatics

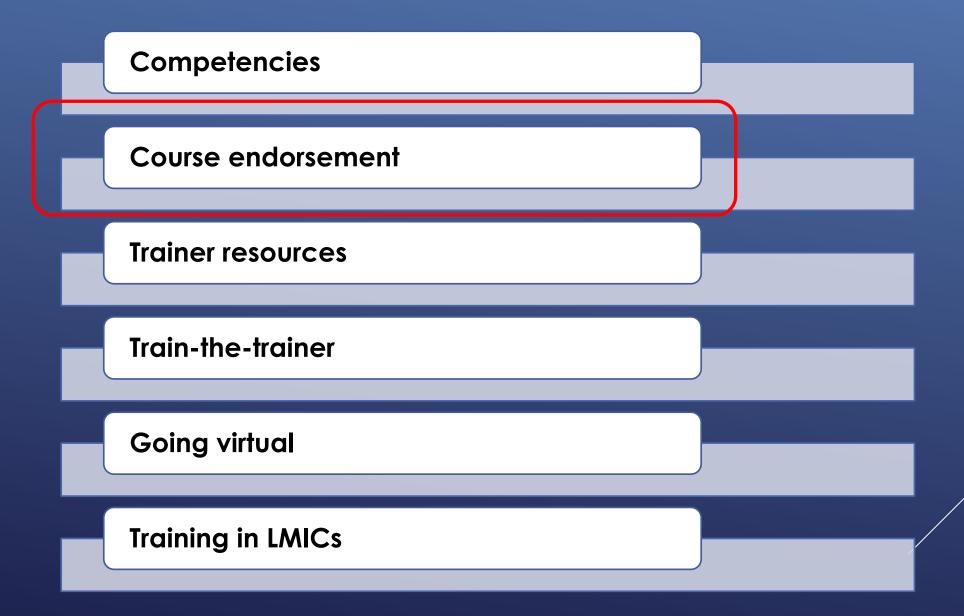
Data curation & submission

Tuberculosis

Presenting data for policy/action

Wetlab scientist

Lab


manager

Bioinformatics scientist

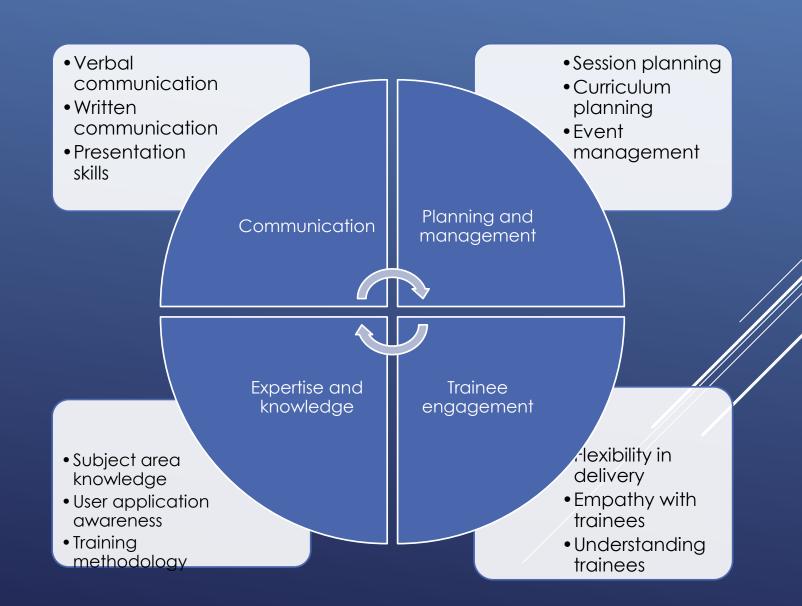
Sys Admin

SARS-Cov-2

Education summit projects

Development of process for endorsement of courses & degrees by ISCB

Education summit projects


Competencies Course endorsement Trainer resources Train-the-trainer Going virtual **Training in LMICs**

Training trainers in developing & delivering training

Online T-t-T course

- Developing along with EBI, WellcomeConnecting Science
- Building TtT curriculum to be run using remote classroom model

First course will run in November 2022

Course outline

- Week 1: Training theory and practical aspects
 - ► Theoretical aspects
 - Course design elements and factors
- ▶ Week 2: Training design elements
 - ► Course design Part 1
 - ► Course design Part 2
- ▶ Week 3: Training evaluation
 - Assessment and evaluation
 - Review and feedback of course designs

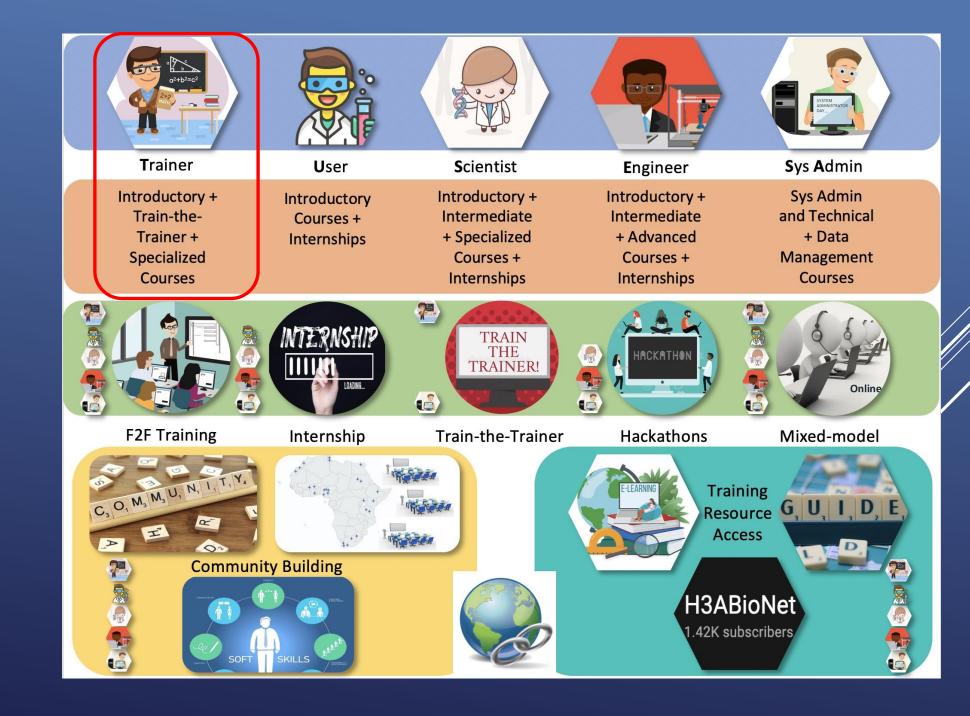
Train-the-trainer: course design and delivery for bioinformatics trainers

22 November–8 December 2022
Tuesdays and Thursdays 14:00–17:00 CAT

- Blended learning format, delivered virtually
- Connect and network with genomic scientists and bioinformaticians.

Course delivery

- Twice weekly contact sessions with expert bioinformatics and data science trainers, delivered across 3 weeks
- Discussion through highly interactive online forums



Course content

Join fellow scientists from bioinformatics and data science, and develop your ability to:

Apply theoretical and pedagogical concepts to

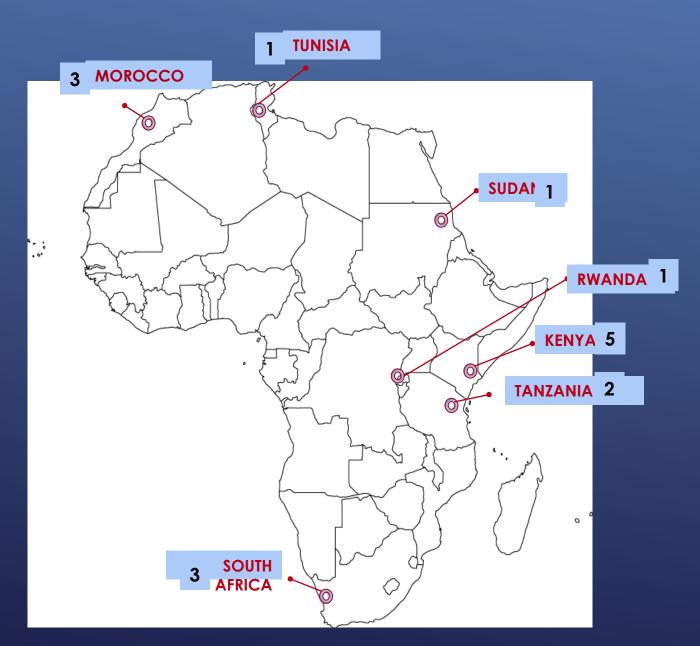
H3ABioNet Train-thetrainer

H3ABioNet train-the-trainer activities

Focused on developing local trainers throughout by:

- Dedicated T-t-T courses and events
- Building faculty from trainees to TAs to trainers
- Train-the-trainer web resources

Software & Data Carpentries


- Software (Command Line, Python, Git), Data (R, Spreadsheets) & Library Carpentries
- Build up and foster a community of certified Carpentries instructors within H3ABioNet
- Teach foundational coding and data analysis skills at local and regional institutions

Carpentries Instructors

KENYA

International Centre of Insect Physiology and Ecology (ICIPE)

MOROCCO

University Mohamed First (MFU) Institut Pasteur du Maroc (IPM)

SOUTH AFRICA

University of Cape Town (CBIO)

TANZANIA

Muhimbili University of Health and Allied Sciences (MUHAS)

TUNISIA

Institut Pasteur de Tunis (IPT)

SUDAN

University of Khartoum (UofK)

RWANDA

Carnegie Mellon University Africa

Education summit projects

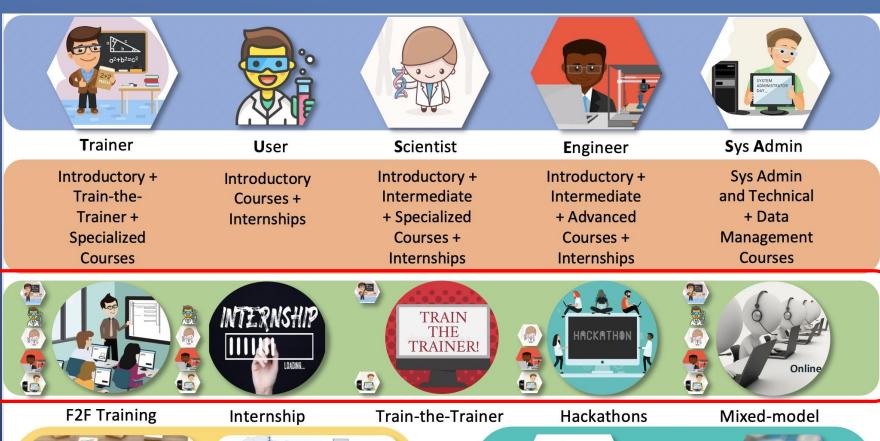
Competencies

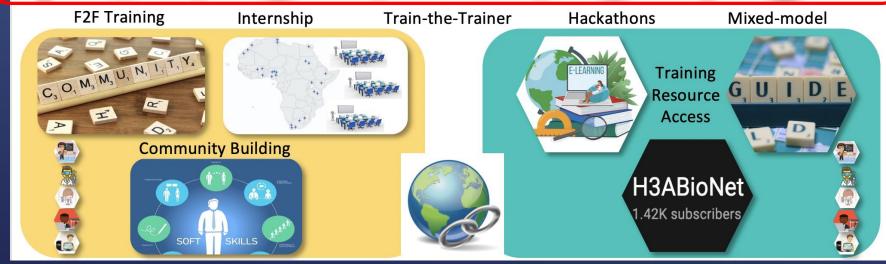
Course endorsement

Trainer resources

Train-the-trainer

Going virtual


Training in LMICs

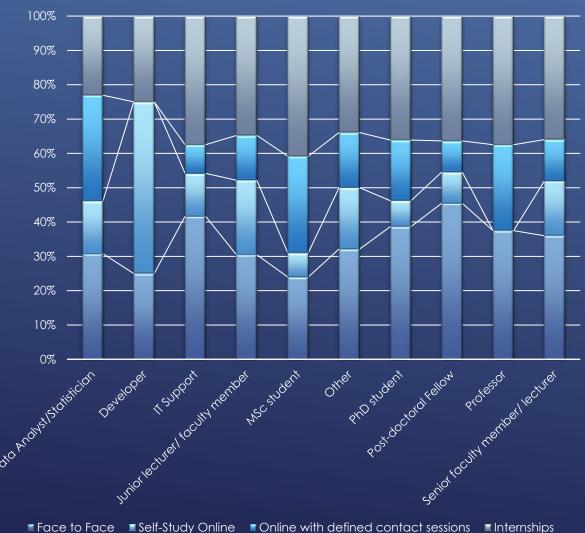

Tools for delivery; challenges, assessing learning, FAIR

Guidelines; building infrastructure; language barriers, EDI

H3ABioNet Training Environment

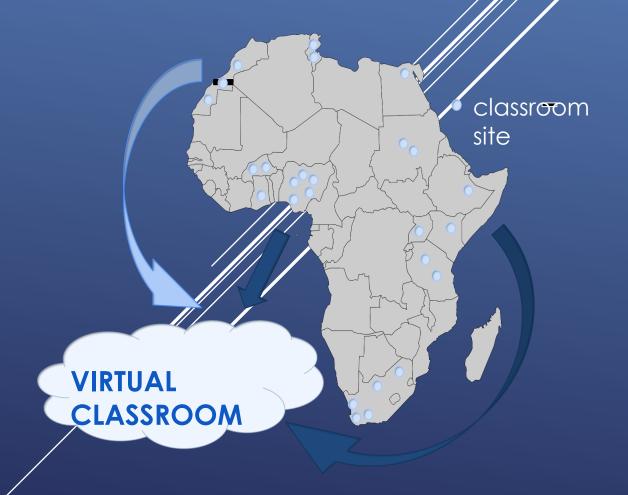
Going virtual

Training mode challenges


Online Training				
Pros	Cons			
Cost efficient	Challenge to foster sense of community			
Reach a large audience	Challenge to form collaborations			
Easy to share material				
Live Workshops/Internships				

Lasy to strate triaterial				
Live Workshops/Internships				
Pros	Cons			
Dedicated time	Costly/unpredictable logistics			
Close interaction	Limited audience reached			
Hackathons				
Pros	Cons			
Defined aims and output	Selection of participants crucial			
Develop practical skills	Base knowledge level required			
Cross-disciplinary	Limited audience			

Training mode requests


- No optimal mode suitable for all training
- Learning styles differ between individuals from different backgrounds
- ► Live training events are still the preferred option
- Live online training has proven successful

Distributed classroom model

- Run on specific days over 1-2 months,
- set contact time per week (3 hours per contact session)
- Distance learning model physical classrooms connected to virtual classrooms
- Use video conferencing facility
- Course management system, e.g. Sakai

Remote classroom training

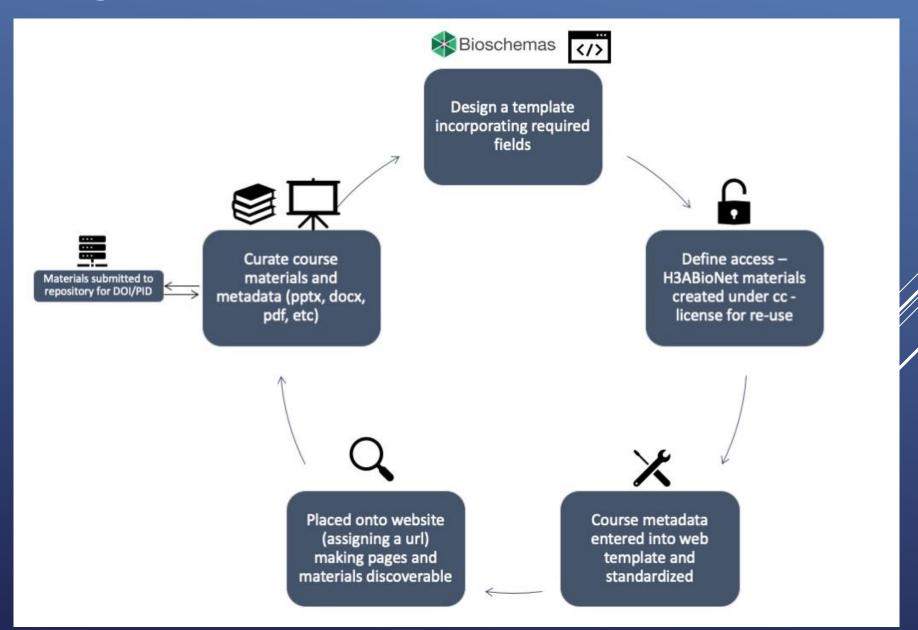
Run successfully for:

- Introduction to Bioinformatics (>1000 participants)
- Intermediate Bioinformatics (~300-400 participants)
- Genomic Medicine

Increasing impact -making training materials FAIR

Use BioSchemas for training courses and materials

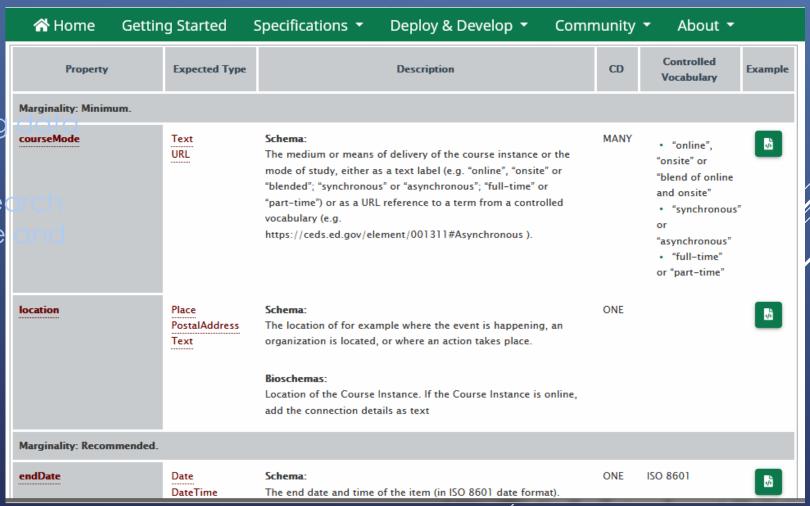
Make training accessible to wide audience


Map training materials to EDAM Ontology

Make training materials findable with license info and available: YouTube, TESS, GitHub etc

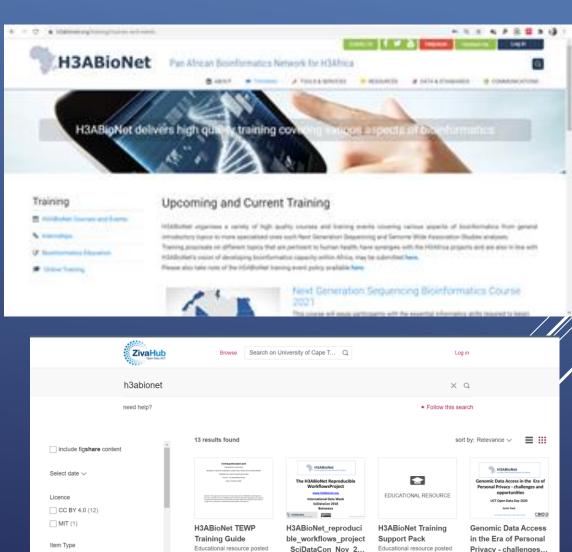
Slides: Verena Ras

Curating training materials


Need to curate materials and make them accessible for wider reach

Slides: Verena Ras

Bioschemas example


- Making materials/content searchable online
- A lightweight way of structuring online
- Created by a consortium of see engines to improve experience search efficacy
- ► Training:
 - Course Instance
 - Course
 - Training Material

Training Material Curation

- H3ABioNet delivers a range of training courses
- Courses result in a range of training materials that could be beneficial to the community
- Materials currently only located on website, not easy to find or know when to re-use
- Aim to curate training materials and making them more accessible

on 30.03.2021

Verena Ras v

Presentation posted on

18.03.2020

Sumir Panii v

Presentation posted on

04.12.2018

Sumir Panii V

on 30.03.2021

Verena Ras 🗸

presentation (9)

software (1)

educational resource (2)

NGS academy course pages

SARS-CoV-2 Bioinformatics Training

Home

About

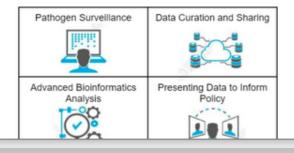
Courses

Resources ~

Contact

Click here for the training survey

The NGS Academy forms part of the Africa CDC Pathogen Genomics Initiative (PGI). This initiative is funded by the Bill & Melinda Gates Foundation. Our training initiatives are carried out in partnership with


the African Society for Laboratory Medicine (ASLM).

Course overview:

The SARS-CoV-2 Bioinformatics Training was a follow-up to our SARS-CoV-2 NGS t the modules was more advanced bioinformatics analysis, data curation and dissemi from SARS-CoV-2 NGS data.

Intended audience:

Personnel of national public health institutions on the African continent, carrying out analyses, and individuals involved in SARS-CoV-2 research.

A pre-course workshop was pre-course workshop was pre-course were introduced, including the course were introduced, including the course were introduced.

- 1. Unix, command line
- 2. Git, version control
- 3. High perforance computir

Course curriculum:

Module 1 Workflows for SARS-CoV-2 analysis

Module 2 Data curation and sharing

Module 3 Advanced bioinformatics analysis

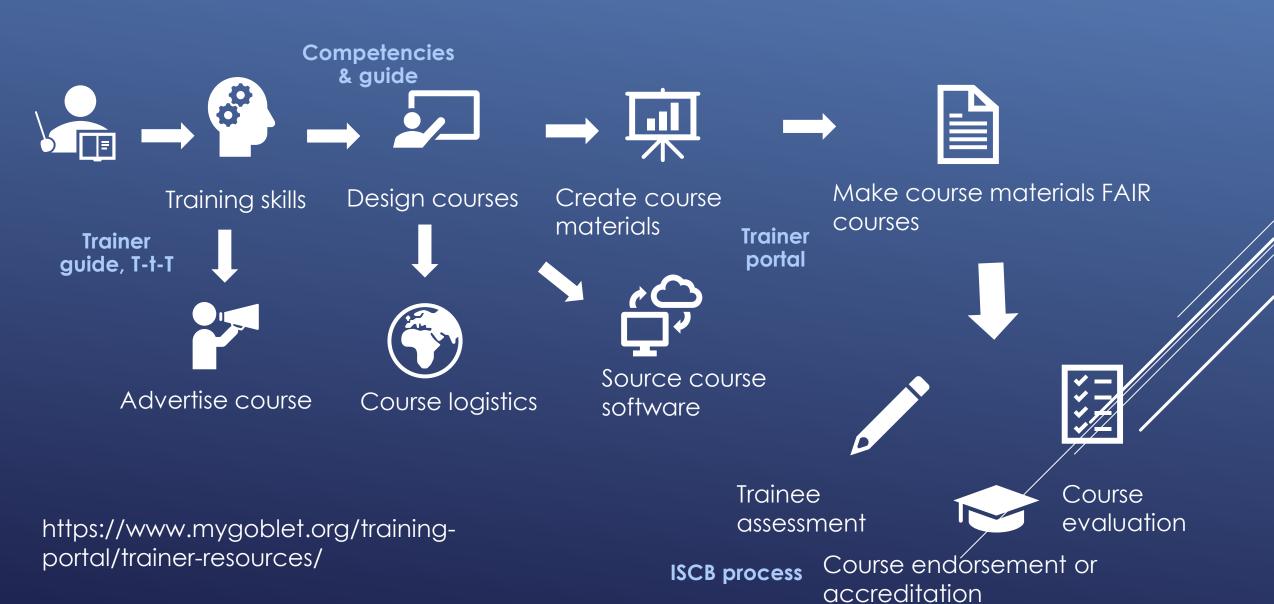
Module 4 Presenting data to inform policy

Recommended materials: Model bioinformatics analysis

Course schedule:

Pre-course workshop Module 1 Module 2 Preparatory sessions Module 3

Module 4


Date	Course materials	Training partner	Interactive Sessions with Instructor/s
5-7 Oct 2021	Unix, command line, git and version control. Introduction to HPC, software containerization, workflow tools	H3ABioNet/The Carpentries	Trainers: Gerrit Botha, Kauthar Omar, Lyndon Zass, Ruth Nanjala, Verena Ras, Ziyaad Parker Helpers: Chaimae Samtal, Nihad Alsayed

Education summit projects

Competencies Course endorsement Trainer resources Train-the-trainer Going virtual **Training in LMICs**

Development of resources to support trainers

Trainer portal

Trainer portal

▼GOBLET About GOBLET Events Training portal News Login Contact \wp

Trainer resources

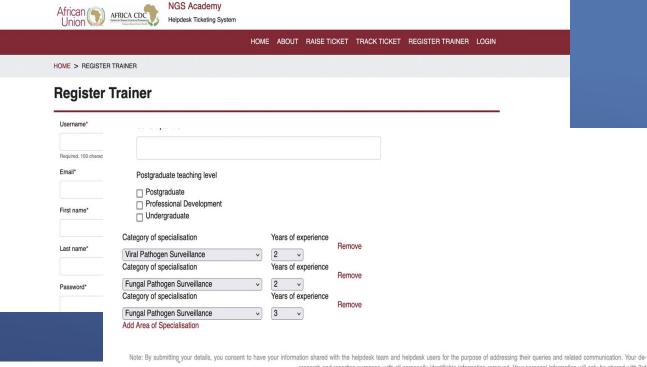
What skills are needed to be a good trainer?

Just because you are very familiar with a topic, doesn't mean you are necessarily able to teach it well. GOBLET has put together some useful resources for improving skills to become a good trainer. This includes a guidance document for new trainers, links to materials and papers from train-the-trainer (TtT) initiatives and to an online course developed collaboratively by GOBLET, H3ABioNet, ISCB, ELIXIR and EBI Training. Many of the materials are applicable for trainers across a range of disciplines but there is a focus on bioinformatics.

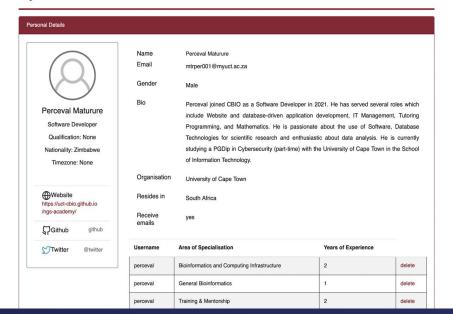
- 1. A Trainer Guidelines Document was developed at a Bioinformatics Education Summit in 2019 which has a number of useful tips for trainers
- 2. The key skills and knowledge bioinformatics trainers should have are included in the GOBLET skills matrix
- 3. Train-the-Trainer courses materials are available from ELIXIR, EMBL-EBI, Carpentries and other organizations who offer Train-the-Trainer courses. Courses by many of these providers are advertised on ELIXIR TeSS.
- 4. An Online Train-the-Trainer course is currently being developed collaboratively by GOBLET, H3ABioNet, ISCB, ELIXIR and EBI Training. [COMING SOON]
- 5. Several papers or blogs have been published about Train-the-Trainer activities, both courses and resources, these include:
 - 1. ELIXIR papers (Via et al, 2019, Morgan et al, 2017),

This site uses functional cookies and external scripts to improve your experience. My settings 4. Others: 1. Madlung 2018 2. Attwood et al, 2019 6. There are several resources for improving your presentation skills such as: EMBL-EBI User Training Working Group (UTWG) training tips How do I design and develop course/training materials? How can I make my training materials Findable, Accessible, Interoperable, and Reusable (FAIR)? How should I organise and facilitate training? How should I deliver training? How should I assess trainees? How do I evaluate a course? How do I endorse and accredit a course? What should I consider when teaching bioinformatics to high school students? Where can I find other sources of support? Missing a Resource? Acknowledgements

Additional resources


- ▶ Need to identify suitable trainers
- ► Requests for longer term support

My Profile


► Requests for mentorship

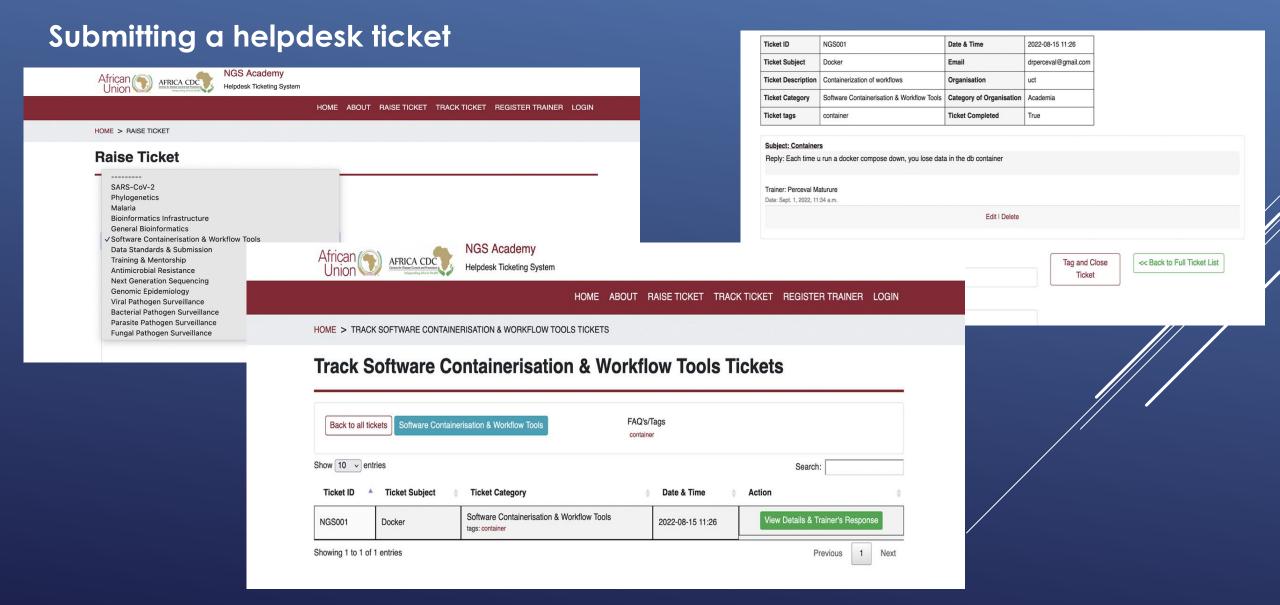
▶ Trainer Database

Note: By submitting your details, you consent to have your information shared with the helpdesk team and helpdesk users for the purpose of addressing their queries and related communication. Your de-, research and reporting purposes, with all personally identifiable information removed. Your personal information will only be shared with 3rd 1 the database please contact NGS. Academy. info@Nsabionet.oru. The Human Research Ethics Committee that has approved the database

Copyright © CBIO-UCT 2022	

Additional resources

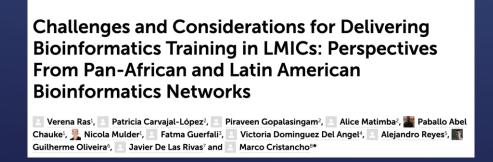
- Need to identify suitable trainers
- Requests for longer term support
- ► Requests for mentorship


▶ Trainer Database

▶ Trainee Helpdesk

Helpdesk/Trainer database

Trainer responses & the knowledgebase


Other useful resources

Training guide & support pack

- Starting Bioinformatics from scratch
- Building infrastructure and training in LMICs

Acknowledgements

Education summit community and project leads

Summit organisers, session chairs, facilitators and participants

H3ABioNet training team & funder (NIH)

NGS Academy training team & funder (BMGF)

Project leads: Cath
Brooksbank, Bruno Gaeta,
Russell Swartz, Sarah
Morgan, Alice Matimba,
Dusanka Nikolic, Michelle
Brazas, Celia van Gelder,
Verena Ras, Patricia
Carvajal Lopez, Venkata
Satagopam

